

RETOUR SUR LA DÉRIVATION

Résumé

Ce chapitre est dans sa grande majorité constitué de rappels de l'année précédente. Cependant, nous viendrons ajouter quelques précisions, particulièrement autour de la dérivée d'une fonction composée.

A Attention

Dans toute la suite, I désignera un intervalle ouvert et f une fonction définie sur I.

1 Fonction dérivée et dérivées usuelles

Définition 1

Soit I' l'ensemble sur lequel f est dérivable, c'est-à-dire tel que pour tout $a \in I$, f est dérivable en a.

On construit la **fonction dérivée** de f, notée f', comme la fonction définie sur I' telle que l'image de $x \in I'$ est le nombre dérivé f'(x).

Remarque 2 On souhaiterait déterminer de manière générale tous les nombres dérivés de f. Nous allons le faire pour les fonctions usuelles, c'est-à-dire, celles que l'on utilise très souvent.

Propriété 3 | Dérivées usuelles

On donne, dans le tableau ci-contre, les dérivées de fonctions usuelles ainsi que leurs ensembles de définition et dérivation. Ici, $n \in \mathbb{N}^*$ et $c \in \mathbb{R}$.

f(x)	D_f	f'(x)	$D_{f'}$
c	R	0	R
x^n	R	nx^{n-1}	R
\sqrt{x}	R+	$\frac{1}{2\sqrt{x}}$	\mathbf{R}_{+}^{*}
$\frac{1}{x}$	R*	$-\frac{1}{x^2}$	\mathbf{R}^*
$\frac{\frac{1}{x^n}}{e^x}$	R*	$-\frac{n}{x^{n+1}}$ e^{x}	R*
e ^x	R	e^x	R

2 Opérations simples sur les dérivées

Propriété 4

Soient f et g deux fonctions dérivables sur I. La fonction f + g est dérivable sur I et :

$$(f+g)'=f'+g'.$$

Propriété 5 | Produit par un scalaire

Soient f une fonction dérivable sur I, et $\lambda \in \mathbf{R}$ une constante réelle. La fonction λf est dérivable sur I et :

$$(\lambda f)' = \lambda f'.$$

Théorème 6 | Produit de deux fonctions

Soient f et g deux fonctions dérivables sur I. La fonction f g est dérivable sur I et :

$$(fg)' = f'g + g'f.$$

Théorème 7 | Quotient de deux fonctions

Soient f et g deux fonctions dérivables sur I. Supposons que pour tout $x \in I$, $g(x) \neq 0$.

La fonction $\frac{f}{g}$ est dérivable sur I et :

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}.$$

3 Composition de deux fonctions

Définition 8 | Fonction composée

Soient f une fonction définie sur I et g une fonction définie sur f(I), l'ensemble des images f(x) pour tout $x \in I$.

On peut construire une fonction $g \circ f$, appelée **fonction composée de** f **par** g, définie sur I par :

$$\forall x \in I$$
, $g \circ f(x) = g(f(x))$.

Exemples 9 Soit f définie sur \mathbf{R}_+ par $f(x) = 2 + \sqrt{x}$. Notons que $f(\mathbf{R}_+) = [2; +\infty[$.

Ainsi, en prenant g définie sur $[2; +\infty[$ par $g(x) = \frac{1}{x}$, on peut donner l'expression de $g \circ f$ définie sur $[2; +\infty[$.

$$\forall x \in [2; +\infty[, \quad g \circ f(x) = g(f(x)) = g(2 + \sqrt{x}) = \frac{1}{2 + \sqrt{x}}.$$

Soit f définie sur **R** par $3 - x^2$ et g définie sur **R** par $2x^2$. $g \circ f$ est définie sur **R** par :

$$\forall x \in \mathbf{R}, \qquad g \circ f(x) = g(3 - x^2) = 2(3 - x^2)^2.$$

Théorème 10 | Dérivation d'une composée

Soient f une fonction dérivable sur I et g une fonction dérivable sur f(I). $g \circ f$ est dérivable sur I et on a :

$$(g \circ f)' = f' \times (g' \circ f).$$

Démonstration. Admise.

Propriété 11 | Composée affine

Soient a, b deux réels et I un intervalle. Notons $J = \{ax + b | x \in I\}$ et soit f une fonction dérivable sur J.

La fonction g définie par g(x) = f(ax + b) pour tout $x \in I$ est dérivable sur I et :

$$g'(x) = a \times f'(ax + b).$$

Démonstration. Appelons \tilde{f} la fonction affine définie sur **R** par $\tilde{f}(x) = ax + b$. \tilde{f} est dérivable sur **R**.

En appliquant le résultat précédent, on a, pour $g = f \circ \tilde{f}$, que g est dérivable sur I et :

$$g' = (f \circ \tilde{f}) = \tilde{f}' \times (f' \circ \tilde{f}).$$

Exemple 12 Soit f définie sur $[2; +\infty[$ par $f(x) = \sqrt{4x - 8}$. f est dérivable sur $]2; +\infty[$ et pour tout $x \in]2; +\infty[$, $f'(x) = 4 \times \frac{1}{2\sqrt{4x - 8}} = \frac{2}{\sqrt{4x - 8}}$.

Propriété 13 | Composée puissance

Soient $n \in \mathbb{N}^*$ et f dérivable sur I (et ne s'annulant pas sur I si n < 0). f^n est dérivable sur I et $(f^n)' = nf'(f)^{n-1}$.

Démonstration. Considérer la composée $\tilde{f} \circ f$ où $\tilde{f}(x) = x^n$.

Propriété 14 | Composée racine carrée

Soit f strictement positive et dérivable sur I.

 \sqrt{f} est dérivable sur I et $(\sqrt{f})' = \frac{f'}{2\sqrt{f}}$.

Démonstration. Considérer la composée $\tilde{f} \circ f$ où $\tilde{f}(x) = \sqrt{x}$.

Propriété 15 | Composée exponentielle

Soit f dérivable sur I. $\exp(f)$ est dérivable sur I et $(exp(f))' = f' \exp(f)$.

Démonstration. Considérer la composée $\tilde{f} \circ f$ où $\tilde{f}(x) = \exp$.