

LOGARITHME NÉPÉRIEN

Résumé

La dualité entre la fonction exponentielle et la fonction logarithme népérien est centrale dans la résolution de nombreux problèmes comme la modélisation des population, et pour des calculs financiers.

1 Fonctions logarithmes

Définition 1 | Logarithmes de base a

Soit a > 0.

La fonction f_a exponentielle de base a admet une fonction réciproque : la fonction **logarithme** \log_a de **base** a.

$$\forall x \in \mathbf{R}, \log_a(a^x) = x$$

$$\forall x \in \mathbf{R}_+^*, a^{\log_a(x)} = x$$

Remarque 2 Toute fonction logarithme est définie sur \mathbf{R}_{+}^{*} à valeurs dans \mathbf{R} mais les fonctions exponentielles sont, elles, définies sur \mathbf{R} à valeurs dans \mathbf{R}_{+}^{*} .

Exemple 3 L'exemple le plus classique de logarithme est log_{10} .

- $ightharpoonup \log_{10}(10\,000) = 4 \text{ car } 10\,000 = 10^4.$
- $\log_{10}(0,1) = -1 \operatorname{car} 0, 1 = 10^{-1}.$
- $10^{\log_{10}(4,2)} = 4,2$

Exercice 4

Calculer $\log_{10}(100)$ et $\log_{10}(0,000001)$.

Propriétés 5

Soit a > 0.

- $ightharpoonup \log_a(1) = 0$
- $ightharpoonup \log_a(a) = 1$
- $\forall x, y \in \mathbf{R}_+^*, \log_a(xy) = \log_a(x) + \log_a(y)$
- $\forall x, y \in \mathbf{R}_+^*, \log_a\left(\frac{x}{y}\right) = \log_a(x) \log_a(y)$
- $\forall x \in \mathbf{R}_{+}^{*}, \forall y \in \mathbf{R}, \log_{a}(x^{y}) = y \log_{a}(x)$

Démonstration. On dispose des propriétés de la fonction exponentielle de base a et on utilise la réciprocité entre exponentielle et logarithme.

Exemples 6 On peut calculer des logarithmes plus facilement en se ramenant à des valeurs connues.

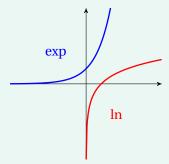
- $\log_{10}(\sqrt{10}) = \log_{10}\left(10^{\frac{1}{2}}\right) = \frac{1}{2}\log_{10}(10) = \frac{1}{2}.$

2 Logarithme népérien

Définition 7 | **Fonction** ln

On appelle **logarithme népérien**, notée ln, la fonction logarithme de base e définie sur $]0;+\infty[$.

Sa courbe représentative est la symétrie de celle de exp selon l'axe y = x.



Propriétés 8

On a les propriétés suivantes;

- ▶ ln(1) = 0
- ▶ ln(e) = 1
- $\blacktriangleright \forall x, y \in \mathbf{R}_+^*, \ln(xy) = \ln(x) + \ln(y)$
- $\blacktriangleright \forall x, y \in \mathbf{R}_+^*, \ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$
- $\forall x \in \mathbf{R}_{+}^{*}, \forall y \in \mathbf{R}, \ln(x^{y}) = y \ln(x)$

Théorème 9 | Dérivabilité

ln est dérivable sur $]0; +\infty[$ (donc continue) et :

$$\forall x > 0, \ln'(x) = \frac{1}{x}.$$

Démonstration. On admet que ln est dérivable sur $]0;+\infty[$.

On sait que $\forall x > 0$, exp $(\ln(x)) = x$ donc en dérivant, par composition, pour tout x > 0:

$$\ln'(x)\exp\left(\ln(x)\right) = 1$$

$$\Leftrightarrow \ln'(x) \times x = 1$$

$$\Leftrightarrow \ln'(x) = \frac{1}{x}$$

Corollaire 10 | Variations de \ln

In est strictement croissante sur $]0; +\infty[$.

Démonstration. Sur $]0; +\infty[$, la fonction inverse est strictement positive.

Exercice 11

Résoudre les équations et inéquations suivantes.

1.
$$e^{2x} - 7 \ge 3$$

2.
$$3\ln(x) + 1 = 13$$

3.
$$\ln(-4x+2) > 0$$

Corollaire 12 | Composée

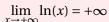
Pour toute fonction u dérivable sur un intervalle I à valeurs dans \mathbf{R}_+^* , on a :

- ightharpoonup ln(u) est dérivable sur I;
- $(\ln(u))' = \frac{u'}{u}.$

3 Analyse asymptotique

Propriétés 13 | Limites en $\pm \infty$

$$\lim_{x \to 0^+} \ln(x) = -\infty$$





Démonstration. ► Soit $A \in \mathbb{R}$. Si $0 < x < e^A$ alors, $\ln(x) < \ln(e^A) = A$ par stricte croissance de ln.

► Soit $A \in \mathbb{R}$. Si $x > e^A$ alors, $\ln(x) > \ln(e^A) = A$ par stricte croissance de ln.

Exercice 14

Déterminer les limites suivantes.

1.
$$\lim_{x\to 0^-} \ln(-3x)$$

3.
$$\lim_{x \to +\infty} \ln(x^2 - 7x)$$

2.
$$\lim_{x\to 0} \ln(x^2+1)$$

$$4. \lim_{x \to -\infty} \ln(-x)^2$$

Théorème 15 | Croissances comparées

Soit $n \in \mathbb{N}^*$.

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{x \to 0^+} x^n \ln(x) = 0$$

Démonstration. ► Soit x > 0.

$$\frac{\ln(x)}{x^n} = \frac{\ln(x)}{e^{\ln(x^n)}}$$

$$= \frac{\ln(x)}{e^{n\ln(x)}}$$

$$= \frac{n\ln(x)}{ne^{n\ln(x)}}$$

$$= \frac{\frac{1}{n}}{\frac{e^{n\ln(x)}}{n\ln(x)}}$$

On sait par croissances comparées que $\lim_{X \to +\infty} \frac{\mathrm{e}^X}{X} = +\infty$. Ainsi, par changement de variable $X = n \ln(x)$, comme $\lim_{x \to +\infty} n \ln(x) = +\infty$, alors

$$\lim_{x\to+\infty}\frac{\mathrm{e}^{n\ln(x)}}{n\ln(x)}=+\infty.$$

Par passage à l'inverse, $\lim_{x \to +\infty} \frac{\frac{1}{n}}{e^{n \ln(x)}} = 0.$ $\overline{n\ln(x)}$

Soit x > 0.

$$x^{n}\ln(x) = e^{n\ln(x)}\ln(x)$$
$$= \frac{1}{n}e^{n\ln(x)}n\ln(x)$$

En posant, $X=n\ln(x)$, comme par croissances comparées, $\lim_{X\to-\infty}X\mathrm{e}^X=0$ et que $\lim_{x \to 0^+} n \ln(x) = -\infty \text{ alors } \lim_{x \to 0^+} \frac{1}{n} e^{n \ln(x)} n \ln(x) = 0.$