DEVOIR SURVEILLÉ 1

Calculatrice autorisée Mardi 15 octobre 2024

EXERCICE 1 (8 POINTS)

Thomas ouvre un compte le 1^{er} janvier 2019 et dépose 1000 €. Il décide de ne jamais retirer d'argent sur ce compte qui est rémunéré au taux annuel de 2 % chaque 1^{er} janvier.

De plus, chaque 1^{er} janvier après l'ouverture du compte, Thomas dépose $500 \in \text{sur le compte}$. On note u_n le solde du compte le 1^{er} janvier de l'année 2019+n. On a donc $u_0=1000$.

- 1. Quel est le solde du compte le 1er janvier 2020?
- **2.** Exprimer u_{n+1} en fonction de u_n pour tout $n \in \mathbb{N}$. Quelle est la nature de la suite (u_n) ?
- **3.** On pose, pour tout $n \in \mathbb{N}$, la suite $v_n = u_n + 25000$.
 - **a.** Déterminer la nature de la suite (v_n) puis donner ses paramètres.
 - **b.** Exprimer v_n puis u_n en fonction de n pour tout $n \in \mathbb{N}$.
- **4.** Quelle est la limite de (u_n) quand n tend vers $+\infty$?

CORRECTION

- 1. $u_1 = 1,02 \times u_0 + 500 = 1,02 \times 1000 + 500 = 1520$ Il y a 1520 € sur le compte le 1^{er} janvier 2020.
- 2. $\forall n \in \mathbb{N}, u_{n+1} = 1,02u_n + 500$ donc (u_n) est une suite arithmético-géométrique de paramètres a = 1,02, b = 500 et $u_0 = 1000$.
- 3. a. Soit $n \in \mathbb{N}$.

$$\begin{split} v_{n+1} &= u_{n+1} + 25000 \\ &= 1,02 u_n + 500 + 25000 \\ &= 1,02 u_n + 25500 \\ &= 1,02 \times (v_n - 25000) + 25500 \\ &= 1,02 v_n \end{split}$$

 (v_n) vérifie la relation de récurrence d'une suite géométrique de raison q=1,02. Son premier terme est $v_0=u_0+25000=26000$.

b. Par la question précédente,

$$\forall n \in \mathbb{N}, v_n = v_0 q^n = 26000 \times 1,02^n.$$

Ainsi,

$$\forall n \in \mathbb{N}, u_n = v_n - 25000 = 26000 \times 1,02^n - 25000.$$

4. 1,02 > 1 donc $\lim_{n \to +\infty} 1,02^n = +\infty$. Ainsi, par somme, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 26\,000 \times 1,02^n - 25\,000 = +\infty$

EXERCICE 2 (8 POINTS)

Déterminer la limite des suites suivantes quand n tend vers $+\infty$.

1.
$$u_n = \frac{5}{n} + \frac{1}{\sqrt{n}}$$

2.
$$u_n = 1.04^n - 0.87^n$$

3.
$$u_n = n^2 - 3$$

4.
$$u_n = 6n\sqrt{n} - 12n^2$$

5.
$$u_n = \frac{2 + \frac{1}{n}}{3 - \frac{1}{n}}$$

6.
$$u_n = \frac{6n^2}{3n^2 - 4n - 2}$$

- **CORRECTION**1. $\lim_{n \to +\infty} \frac{5}{n} = +\infty$ et $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = +\infty$ donc par somme, $\lim_{n \to +\infty} u_n = +\infty$.
- 2. 1.04 > 1 et -1 < 0.87 < 1 donc $\lim_{n \to +\infty} 1.04^n = +\infty$ et $\lim_{n \to +\infty} 0.87^n = 0$. Par différence, $\lim_{n \to +\infty} u_n = +\infty$.
- $3. \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n^2 3 = +\infty.$
- **4.** $\lim_{n \to +\infty} 6n\sqrt{n} = +\infty$ et $\lim_{n \to +\infty} 12n^2 = +\infty$. La différence est une forme indéterminée $+\infty \infty$.

Soit $n \in \mathbb{N}$, factorisons u_n par n^2 .

$$u_n = 6n\sqrt{n} - 12n^2$$

$$= n^2 \left(\frac{6n\sqrt{n}}{n^2} - \frac{12n^2}{n^2} \right)$$

$$= n^2 \left(\frac{6}{\sqrt{n}} - 12 \right)$$

$$\lim_{n \to +\infty} \frac{6}{\sqrt{n}} = 0 \text{ donc } \lim_{n \to +\infty} \left(\frac{6}{\sqrt{n}} - 12 \right) = -12.$$

Par produit, comme $\lim_{n \to +\infty} n^2 = +\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

- 5. $\lim_{n \to +\infty} 2 + \frac{1}{n} = 2$ et $\lim_{n \to +\infty} 3 \frac{1}{n} = 3$ donc par quotient, $\lim_{n \to +\infty} u_n = \frac{2}{3}$.
- 6. Nous sommes devant une forme indéterminée au dénominateur puis sur le quotient complet. Levons l'indétermination dès maintenant.

Soit $n \in \mathbb{N}$.

$$u_n = \frac{6n^2}{3n^2 - 4n - 2}$$

$$= \frac{6n^2}{n^2 \left(3 - \frac{4}{n} - \frac{2}{n^2}\right)}$$

$$= \frac{6}{3 - \frac{4}{n} - \frac{2}{n^2}}$$

Par quotient, $\lim_{n\to+\infty} u_n = \frac{6}{3} = 2$.

EXERCICE 3 (4 POINTS)

On considère la suite (u_n) définie, pour tout $n \in \mathbb{N}$, par $u_n = \frac{1 + 2\cos(5n)}{n+1}$.

1. Montrer que, pour tout $n \in \mathbb{N}$:

$$-\frac{1}{n+1} \leqslant u_n \leqslant \frac{3}{n+1}.$$

2. En déduire $\lim_{n\to+\infty} u_n$.

CORRECTION

1. Soit $n \in \mathbb{N}$.

$$-1 \leqslant \cos(5n \leqslant 1)$$

$$\Leftrightarrow -2 \leqslant 2\cos(5n) \leqslant 2$$

$$\Leftrightarrow -1 \leqslant 1 + 2\cos(5n) \leqslant 3$$

$$\Leftrightarrow \frac{-1}{n+1} \leqslant \frac{1 + 2\cos(5n)}{n+1} \leqslant \frac{3}{n+1}$$

2. $\lim_{n \to +\infty} -\frac{1}{n+1} = 0$ et $\lim_{n \to +\infty} \frac{3}{n+1} = 0$ donc d'après le théorème des gendarmes, $\lim_{n \to +\infty} u_n = 0$.