Durée: 1 heure

Exercice 1 | 4 points

1. Écris sous forme d'un produit de puissances de nombres premiers.

a)
$$\frac{77^5 \times 121}{49}$$

b)
$$\frac{8^4 \times (2^{11})^2}{32}$$

2. Écris les expressions suivantes sous la forme $a\sqrt{b} + c$ ou $a\sqrt{b}$, b le plus petit possible :

a)
$$\sqrt{42}\sqrt{24}$$

b)
$$(\sqrt{2} + 2)(\sqrt{32} - 3)$$

Correction

1. a)

$$\frac{77^5 \times 121}{49} = \frac{(7 \times 11)^5 \times 11^2}{7^2}$$
$$= \frac{7^5 \times 11^5 \times 11^2}{7^2}$$
$$= 7^5 \times 11^5 \times 11^2 \times 7^{-2}$$
$$= 7^3 \times 11^7$$

b)

$$\frac{8^4 \times (2^{11})^2}{32} = \frac{(2^3)^4 \times (2^{11})^2}{2^5}$$
$$= \frac{2^{12} \times 2^{22}}{2^5}$$
$$= 2^{12} \times 2^{22} \times 2^{-5}$$
$$= 2^{12+22-5}$$
$$= 2^{29}$$

2. a)

$$\sqrt{42}\sqrt{24} = \sqrt{2 \times 3 \times 7}\sqrt{2^3 \times 3}$$

$$= \sqrt{2}\sqrt{3}\sqrt{7}\sqrt{2^3}\sqrt{3}$$

$$= \sqrt{2}\sqrt{2}^3\sqrt{3}\sqrt{3}\sqrt{7}$$

$$= \sqrt{2}^4\sqrt{3}^2\sqrt{7}$$

$$= 2^2 \times 3\sqrt{7}$$

$$= 12\sqrt{7}$$

b)

$$(\sqrt{2} + 2)(\sqrt{32} - 3) = \sqrt{2}\sqrt{32} + \sqrt{2} \times (-3) + 2\sqrt{32} + 2 \times (-3)$$

$$= \sqrt{2}^{6} - 3\sqrt{2} + 2\sqrt{2}^{5} - 6$$

$$= 2^{3} - 3\sqrt{2} + 2 \times 2^{2}\sqrt{2} - 6$$

$$= 8 - 6 - 3\sqrt{2} + 8\sqrt{2}$$

$$= 2 + 5\sqrt{2}$$

Exercice 2 | 8 points

- 1. Donne un nombre, sans justification, qui est :
 - a) un nombre réel mais pas rationnel.
 - b) un nombre rationnel mais pas décimal.
 - c) un nombre entier relatif mais pas entier naturel.
- 2. Traduis mathématiquement les appartenances suivantes :
 - a) x appartient à l'ensemble des nombres rationnels.
 - **b)** *x* est un nombre réel non-nul.
 - c) x est un nombre réel compris entre -4, inclus, et 2, exclu.
- 3. Dans chaque cas, écris, à l'aide d'un intervalle, l'ensemble des nombres réels :
 - a) supérieurs ou égaux à 5.
 - **b)** x tels que : $-\pi < x \le 2\pi$.
- 4. Représente sur la droite réelle :
 - **a)** l'intervalle I = [-5; 3].
 - **b)** l'intervalle $I =]-\infty; 7[$.
 - c) $I \cup J$.
 - **d)** $I \cap J$.
- **5.** Donne un exemple d'intervalles I et J tels que l'intersection $I \cap J$ n'est pas un intervalle.

Correction

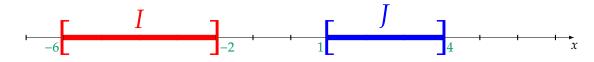
- 1. a) π et $\sqrt{2}$ sont réels mais non rationnels.
 - b) $\frac{1}{3}$ n'est pas décimal (voir cours pour la démonstration) mais est rationnel.
 - c) -2, -10 et -7 sont des nombres entiers relatifs strictement négatifs donc non-naturels.
- 2. a) $x \in \mathbb{Q}$
 - **b)** $x \in \mathbb{R}^*$
 - c) $x \in [-4; 2[$
- 3. a) $[5; +\infty[$
 - **b)** $] \pi; 2\pi]$
- 4. a) I = [-5, 3]

b) $J =] - \infty; 7[$

c) Remarquons que $I \subset J$ et donc $I \cup J$ étant l'ensemble des éléments de I ou de J (et donc aussi des deux en même temps), on a ainsi : $I \cup J = J$

d) De même, $I \subset J$ donc $I \cap J$ étant l'ensemble des éléments à la fois de I et de J, on a : $I \cap J = I$

5. On va construire une intersection **vide** en choisissant deux intervalles I et J qui n'ont aucun élément en commun. Ainsi, on aura $I \cap J = \emptyset$. I = [-6, -2] et J = [1, 4] conviennent.



Exercice 3 | 8 points

1. Dans chaque cas, développe et réduis.

a)
$$(x+4)^2$$

b)
$$(-2x+4)^2$$

c)
$$(2x-10)^2$$

d)
$$(10x - 2)(10x + 2)$$

2. Résous, dans \mathbb{R} , les équations suivantes :

a)
$$27x = 12x + 15$$

b)
$$\sqrt{2}x - x = 1$$

c)
$$\frac{3x}{5} = -15$$

d)
$$x^2 + 4x + 2 = x^2 - 4x + 2$$

Correction

1. a)

$$(x + 4)^2 = x^2 + 2 \times x \times 4 + 4^2$$
$$= x^2 + 8x + 16$$

b)

$$(-2x + 4)^2 = (-2x)^2 + 2 \times (-2x) \times 4 + 4^2$$
$$= 4x^2 - 16x + 16$$

c)

$$(2x-10)^2 = (2x)^2 - 2 \times (2x) \times 10 + 10^2$$
$$= 4x^2 - 40x + 100$$

d)

$$(10x - 2)(10x + 2) = (10x)^2 - 2^2$$
$$= 100x^2 - 4$$

2. a)

$$27x = 12x + 15$$

$$\Leftrightarrow 27x - 12x = 12x - 12x + 15$$

$$\Leftrightarrow 15x = 15$$

$$\Leftrightarrow \frac{15x}{15} = \frac{15}{15}$$

$$\Leftrightarrow x = 1$$

1 est l'unique solution de 27x = 12x + 15 dans \mathbb{R} .

b)

$$\sqrt{2}x - x = 1$$

$$\Leftrightarrow \qquad \sqrt{2} \times x - 1 \times x = 1$$

$$\Leftrightarrow \qquad (\sqrt{2} - 1)x = 1$$

$$\Leftrightarrow \qquad \frac{\sqrt{2} - 1}{\sqrt{2} - 1}x = \frac{1}{\sqrt{2} - 1}$$

$$\Leftrightarrow \qquad x = \frac{1}{\sqrt{2} - 1}$$

L'ensemble des solutions réelles de $\sqrt{2}x - x = 1$ est $\mathscr{S} = \left\{\frac{1}{\sqrt{2} - 1}\right\}$.

c)

$$\frac{3x}{5} = -15$$

$$\Leftrightarrow \qquad 3x = -15 \times 5$$

$$\Leftrightarrow \qquad x = \frac{-15 \times 5}{3}$$

$$\Leftrightarrow \qquad x = -25$$

 $\mathscr{S} = \{-25\}.$

d)

$$x^{2} + 4x + 2 = x^{2} - 4x + 2$$

$$\Leftrightarrow x^{2} + 4x + 2 - x^{2} - 2 = x^{2} - 4x + 2 - x^{2} - 2$$

$$\Leftrightarrow 4x = -4x$$

$$\Leftrightarrow 8x = 0$$

$$\Leftrightarrow x = 0$$

0 est l'unique solution dans \mathbb{R} .