DEVOIR SURVEILLÉ 1

Calculatrice autorisée Lundi 7 octobre

EXERCICE 1 (4 POINTS)

Résoudre les équations suivantes.

1.
$$5x + 12 = 7x - 4$$

2.
$$(3x-21)(4-18x)=0$$

CORRECTION

1.

$$5x+12=7x-4$$

$$5x-7x=-4-12$$

$$-2x=-16$$

$$x=\frac{-16}{-2}$$

$$x=8$$

2.

$$(3x-21)(4-18x) = 0$$

$$3x-21 = 0 \text{ ou } 4-18x = 0$$

$$3x = 21 \text{ ou } -18x = -4$$

$$x = \frac{21}{3} \text{ ou } x = \frac{-4}{-18}$$

$$x = 7 \text{ ou } x = \frac{2}{9}$$

EXERCICE 2 (6 POINTS)

- 1. Donner la définition d'une suite arithmétique.
- 2. Donner un exemple d'une suite qui n'est pas arithmétique.
- **3.** On considère (u_n) une suite arithmétique de raison 1,75 et de premier terme $u_0 = -3,75$. Calculer u_{10} et u_{100} .

CORRECTION

- 1. Une suite (u_n) est dite arithmétique si elle vérifie la relation de récurrence $u_{n+1} = u_n + r$ avec r un nombre réel.
- **2.** 1;2;4;8;16;... sont les premiers termes d'une suite qui n'est pas arithmétique puisque $u_1 u_0 = 1$ et $u_2 u_1 = 2$.
- **3.** La forme explicite de (u_n) est, pour tout $n \in \mathbb{N}$:

$$u_n = u_0 + r \times n = -3,75 + 1,75n.$$

Ainsi,

- $u_{10} = -3,75 + 1,75 \times 10 = 13,75$
- $u_{100} = -3,75 + 1,75 \times 100 = 171,25$.

EXERCICE 3 (5 POINTS)

Lorsque l'on pratique la plongée sous-marine en loisir, il faut faire attention à ne pas remonter trop vite à la surface. La vitesse de remontée préconisée est depuis plusieurs dizaines d'années établie à 10 m/min.

Carine, plongeuse consciencieuse, respecte rigoureusement la vitesse préconisée à chaque instant pendant sa remontée. On note u_n la distance parcourue pendant la remontée, où n est représente le nombre de minutes écoulées.

- 1. Donner la nature de la suite (u_n) en précisant ses paramètres.
- **2.** Exprimer u_n en fonction de n.
- **3.** Calculer et interpréter u_3 puis u_{30} .
- 4. Carine a plongé à 60 mètres de profondeur. Combien de minutes durera sa remontée à la surface?

CORRECTION

- **1.** (u_n) , en m, est arithmétique de raison r = 10 et de premier terme $u_0 = 0$.
- **2.** Pour tout $n \in \mathbb{N}$, $u_n = u_0 + r \times n = 10n$.
- 3. $u_3 = 10 \times 3 = 30$ donc Carine est remontée de 30 m en 3 minutes.
 - $u_{30} = 10 \times 30 = 300$ donc Carine est remontée de 300 m en 30 minutes.
- **4.** On cherche n tel que $u_n = 60$.

$$u_n = 60$$

$$10n = 60$$

$$n = \frac{60}{10}$$

$$n = 6$$

Sa remontée complète durera 6 minutes.

EXERCICE 4 (5 POINTS)

Diane court chaque semaine à compter du 1^{er} jour de l'année. Elle s'impose un programme qui fixe la distance v_n parcourue, en km, en fonction du nombre n de semaines après le début de l'année.

On sait que $v_1 = 6$ et, pour tout entier naturel $n \ge 1$, $v_{n+1} = v_n + 0.5$.

- 1. Quelle distance parcourt-elle la première semaine?
- 2. Quelle distance parcourt-elle en plus d'une semaine à l'autre?
- **3.** Calculer la distance parcourue la 10^{ème} semaine.
- **4.** À partir de quelle semaine Diane aura-t-elle parcouru pour la première fois une distance supérieure ou égale à 15 km?

CORRECTION

- 1. Diane parcourt 6 km la première semaine car $v_1 = 6$.
- **2.** (v_n) est une suite arithmétique de raison 0,5 donc Diane parcourt 500 m de plus d'une semaine à l'autre.
- **3.** La forme explicite de (v_n) est, pour tout $n \in \mathbb{N}$:

$$v_n = v_0 + r \times n = v_1 + r(n-1) = 6 + 0.5 \times (n-1).$$

Ainsi,
$$v_{10} = v_1 + r \times 9 = 6 + 0.25 \times 9 = 10.5$$
.

4. Résolvons $v_n = 15$.

$$v_n = 15$$
 $6 + 0.5 \times (n - 1) = 15$
 $0.5 \times (n - 1) = 9$
 $(n - 1) = 9 \times 2$
 $n - 1 = 18$
 $n = 19$

À la fin de la $19^{\rm e}$ semaine, Diane aura parcouru pour lh
ja première fois $15~{\rm km}.$