Devoir surveillé 3

Calculatrice autorisée Jeudi 13 avril 2023

EXERCICE 1 (12 POINTS)

Déterminer, pour chacune des fonctions f, l'expression de sa fonction dérivée f' sur l'intervalle I indiqué.

1.
$$f(x) = -\frac{1}{3}x^3 + 3x^2 - 2x + 7$$
; $I = \mathbb{R}$

5.
$$f(x) = \frac{x^2}{x^2 + 1}$$
; $I = \mathbb{R}$

2.
$$f(x) = -\frac{2}{x^3}$$
; $I =]0; +\infty[$

6.
$$f(x) = x - \frac{4}{x+1}$$
; $I = \mathbb{R}_+$

3.
$$f(x) = 5(x-2)^2$$
; $I = \mathbb{R}$

7.
$$f(x) = \frac{(x+3)^2}{\sqrt{x+3}}$$
; $I =]-3$; $+\infty$ [

4.
$$f(x) = \frac{4}{1+3x}$$
; $I = \left[-\frac{1}{3}; +\infty \right]$

8.
$$f(x) = \sqrt{x-2} \left(\frac{1}{x} - x^3 \right)$$
; $I =]2; +\infty[$

CORRECTION
1.
$$f'(x) = -x^2 + 6x - 2$$

2.
$$f'(x) = \frac{6}{x^4}$$

3.
$$f'(x) = 10(x-2) = 10x - 20$$

4.
$$f'(x) = -\frac{12}{(1+3x)^2}$$

5.
$$f'(x) = \frac{2x}{(x^2+1)^2}$$

6.
$$f'(x) = 1 + \frac{4}{(x+1)^2}$$

7.
$$f'(x) = \frac{2(x+3)\sqrt{x+3} - \frac{1}{2\sqrt{x+3}}(x+3)^2}{\sqrt{x+3}^2} = \frac{3}{2}\sqrt{x+3}$$

8.
$$f'(x) = \frac{1}{2\sqrt{x-2}} \left(\frac{1}{x} - x^3 \right) + \sqrt{x-2} \left(-\frac{1}{x^2} - 3x^2 \right)$$

EXERCICE 2 (4 POINTS)

Soit *g* une fonction définie sur *I*.

Dans chaque cas, donner l'expression d'une fonction f dérivable sur I telle que f' = g.

1.
$$g(x) = x^2 + 3x + 1$$
; $I = \mathbb{R}$

2.
$$g(x) = \frac{2}{x^2} - 1$$
; $I = \mathbb{R}_+^*$

f est appelée une primitive de g sur I.

CORRECTION

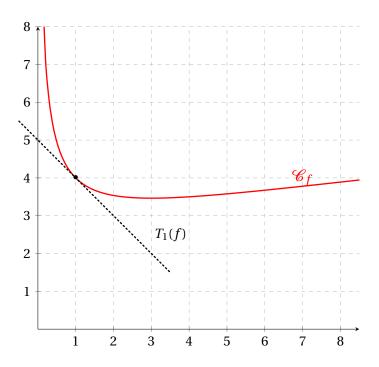
1.
$$f(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 + x$$
 convient.

2.
$$f(x) = -\frac{2}{x} - x$$
 convient.

EXERCICE 3 (4 POINTS)

1. Donner la forme générale de l'équation de $T_a(f)$: la tangente à \mathscr{C}_f au point d'abscisse a où \mathscr{C}_f est la courbe représentative de f, une fonction dérivable sur un intervalle I et $a \in I$.

2. On considère le graphique suivant.



a. Donner l'équation réduite de $T_1(f)$.

b. Donner le tableau de signes de f'.

CORRECTION

1.

$$T_a(f): y = f'(a)(x-a) + f(a)$$

2. a. Par lecture graphique du coefficient directeur et ordonnée à l'origine.

$$T_1(f): y = -x + 5$$

b. f est décroissante sur]0;3] et croissante sur $[3;+\infty[$. ainsi on a le tableau de signes de f'.

x	0		3		+∞
f'(x)		_	0	+	