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DÉRIVATION

☼ Résumé

Pan incontournable de l’analyse, la dérivation est un domaine des mathéma-
tiques aux applications diverses. La principale application que l’on abordera ici
est l’étude des variations d’une fonction dérivable.

Exclamation-Triangle Attention

Dans toute la suite, I désignera un intervalle ouvert et f une fonction définie
sur I .

1 Nombre dérivé et fonction dérivée

1.1 Taux d’accroissement

Définition

Soient a ∈ I et b ∈ I . On appelle taux d’accroissement de f entre a et b le
nombre suivant :

τ f ,a,b = f (b)− f (a)

b −a
.

Remarque τ f ,a,b représente graphiquement le coefficient directeur (ou la pente)
de la droite d passant les points A(a; f (a)) et B(b; f (b)).
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Exemples I Soit f définie sur R par f (x) = 5x2 +5.

Le taux d’accroissement de f entre 2 et 3 est :

τ f ,2,3 =
f (3)− f (2)

3−2
= (5×32 +5)− (5×22 +5)

1
= 5× (9−4) = 25.

I Soit f définie sur R∗ par f (x) = 3

x
.

Le taux d’accroissement de f entre 1 et 4 est :

τ f ,1,4 =
f (4)− f (1)

4−1
=

3
4 − 3

1

3
= 1

4
−1 =−3

4
.
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1.2 Nombre dérivé

Définition

Soit a ∈ I un nombre fixé.
Considérons, pour h 6= 0, le taux d’accroissement τ(h) de f entre a et a +h :

τ(h) = f (a +h)− f (a)

h
.

Si, quand h prend des valeurs infiniment proches de 0 (h → 0), τ(h) se stabilise
autour d’une valeur limite, alors on dira que f est dérivable en a. La valeur
limite est appelée nombre dérivé de f en a, notée f ′(a).

On notera à l’avenir :
lim
h→0

τ(h) = f ′(a).

Remarque Graphiquement, le nombre dérivé correspond au taux d’accroissement
instantané autour de a. Il donne une tendance locale des variations de f .

Exemples I

I Soit f définie sur R par f (x) = 2x2 −7x +1. Montrons que f est dérivable en 3.

Soit h 6= 0. On a :

τ(h) = f (3+h)− f (3)

h

=
(
2× (3+h)2 −7× (3+h)+1

)− (
2×32 −7×3+1

)
h

On développe et on réduit au numérateur, puis on simplifie par h qui est non nul.

τ(h) = 2h2 +5h

h
= 2h +5

Quand h tend vers 0, alors les valeurs de 2h +5 tendent vers 5.

Ainsi, f est dérivable en 3. De plus, f ′(3) = 5 car lim
h→0

τ(h) = 5.

I Soit f définie sur [6;+∞[ par f (x) =p
x −6. f n’est pas dérivable en 6.

En effet, si h 6= 0 et τ(h) = f (6+h)− f (6)

h
, alors :

τ(h) =
p

(6+h)−6−p
6−6

h

=
p

(h)−p
0

h

=
p

h

h

= 1p
h

τ(h) n’admet pas de valeur limite si h → 0. Les valeurs sont de plus en plus grandes
et sans plafond, on notera lim

h→0
τ(h) =+∞.

1.3 Fonction dérivée et dérivées usuelles

Définition

Soit I ′ l’ensemble sur lequel f est dérivable, c’est-à-dire tel que pour tout a ∈ I ,
f est dérivable en a.
On construit la fonction dérivée de f , notée f ′, comme la fonction définie sur
I ′ telle que l’image de x ∈ I ′ est le nombre dérivé f ′(x).

Remarque On souhaiterait déterminer de manière générale tous les nombres déri-
vés de f . Nous allons le faire pour les fonctions usuelles, c’est-à-dire, celles que l’on
utilise très souvent.

Théorème | Fonctions constantes

Soit f définie sur R par f (x) = c avec c une constante réelle.
f est dérivable sur R et pour tout x ∈ R, f ′(x) = 0.

Démonstration. Soit x ∈ R fixé. Soit h 6= 0.

1ÈRE SPÉCIALITÉ - 2025 / 2026 Creative-CommonsCreative-Commons-ByCreative-Commons-Nc-Eu https://romaincessac.github.io/maths/ 2 / 8

https://romaincessac.github.io/maths/


τ(h) = f (x +h)− f (x)

h

= c − c

h

= 0

h
= 0

Ainsi, lim
h→0

τ(h) = 0.

Théorème | Fonctions affines

Soit f définie sur R par f (x) = ax +b avec a et b réels.
f est dérivable sur R et pour tout x ∈ R, f ′(x) = a.

Démonstration. Soit x ∈ R fixé. Soit h 6= 0.

τ(h) = f (x +h)− f (x)

h

= a(x +h)+b − (ax +b)

h

= ah

h
= a

Ainsi, lim
h→0

τ(h) = a.

Théorème | Fonction carré

Soit f définie sur R par f (x) = x2.
f est dérivable sur R et pour tout x ∈ R, f ′(x) = 2x.

Démonstration. Soit x ∈ R fixé. Soit h 6= 0.

τ(h) = f (x +h)− f (x)

h

= (x +h)2 −x2

h

= 2xh +h2

h
= 2x +h

Ainsi, lim
h→0

τ(h) = 2x.

Théorème | Fonction cube

Soit f définie sur R par f (x) = x3.
f est dérivable sur R et pour tout x ∈ R, f ′(x) = 3x2.

Démonstration. Soit x ∈ R fixé. Soit h 6= 0.

τ(h) = f (x +h)− f (x)

h

= (x +h)3 −x3

h

= (x +h)(x2 +2xh +h2)−x3

h

= 3x2h +3xh2 +h3

h
= 3x2 +3xh +h2

Ainsi, lim
h→0

τ(h) = 3x2.

Théorème | Fonction monôme

Soit f définie sur R par f (x) = xn , n étant un nombre entier naturel non nul.
f est dérivable sur R et pour tout x ∈ R, f ′(x) = nxn−1.

Démonstration. HORS-PROGRAMME

On se base sur la formule du binôme de Newton qui permet de développer une expression du
type (a +b)n .

(x +h)n =
n∑

k=0

(
n
k

)
xk hn−k

où

(
n
k

)
est un nombre égal à n pour k = 1 et k = n −1.

Théorème | Fonction racine carrée

Soit f définie sur [0;+∞[ par f (x) =p
x.

f est dérivable sur ]0;+∞[ et pour tout x ∈ ]0 ;+∞[, f ′(x) = 1

2
p

x
.

1ÈRE SPÉCIALITÉ - 2025 / 2026 Creative-CommonsCreative-Commons-ByCreative-Commons-Nc-Eu https://romaincessac.github.io/maths/ 3 / 8

https://romaincessac.github.io/maths/


Démonstration. Soit x ∈ ]0 ;+∞[ fixé. Soit h > 0 de sorte que x +h ∈ ]0 ;+∞[.

τ(h) = f (x +h)− f (x)

h

=
p

x +h −p
x

h

=
p

x +h −p
x

h
×
p

x +h +p
xp

x +h +p
x

= |x +h|− |x|
h

(p
x +h +p

x
)

= x +h −x

h
(p

x +h +p
x
)

= h

h
(p

x +h +p
x
)

= 1p
x +h +p

x

Ainsi, lim
h→0

τ(h) = 1p
x +p

x
= 1

2
p

x
.

Théorème | Fonction inverse

Soit f définie sur R∗ par f (x) = 1

x
.

f est dérivable sur R∗ et pour tout x ∈ R∗, f ′(x) =− 1

x2 .

Démonstration. Soit x ∈ R∗ fixé. Soit h 6= 0 tel que x +h 6= 0.

τ(h) = f (x +h)− f (x)

h

=
1

x+h − 1
x

h

On réduit au même dénominateur les fractions du numérateur.

τ(h) =
x

(x+h)x − x+h
x(x+h)

h

=
− h

(x+h)x

h

=− 1

(x +h)x

Ainsi, lim
h→0

τ(h) =− 1

x2 .

Théorème | Fonctions inverses

Soit f définie sur R∗ par f (x) = 1

xn , n étant un entier naturel non nul.

f est dérivable sur R∗ et pour tout x ∈ R∗, f ′(x) =− n

xn+1 .

2 Opérations sur les dérivées

2.1 Somme

Propriété

Soient f et g deux fonctions définies et dérivables sur I .
La fonction f + g définie sur I par ( f + g )(x) = f (x)+ g (x) est dérivable sur I et
pour tout x ∈ I :

( f + g )′(x) = f ′(x)+ g ′(x).

On notera généralement ( f + g )′ = f ′+ g ′.

Démonstration. Soit x ∈ I et h 6= 0 tel que x +h ∈ I .

τ(h) = ( f + g )(x +h)− ( f + g )(x)

h

=
(

f (x +h)+ g (x +h)
)− (

f (x)+ g (x)
)

h

= f (x +h)− f (x)

h
+ g (x +h)− g (x)

h

Ainsi, lim
h→0

τ(h) = f ′(x)+ g ′(x).
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Exemples On peut calculer des dérivées de fonctions composées à partir des fonc-
tions usuelles.

I Soit f définie sur R∗ par f (x) = x2 + 1

x
. f est dérivable sur R∗ et pour tout x ∈ R∗ :

f ′(x) = 2x− 1

x2 .

I Soit f définie sur ]0;+∞[ par f (x) = 5x −8+p
x + 1

x2 . f est dérivable sur ]0;+∞[ et

pour tout x ∈ ]0 ;+∞[ :

f ′(x) = 5+ 1

2
p

x
− 2

x3 .

2.2 Produit

Propriété | Produit par un scalaire

Soient f une fonction définie et dérivable sur I , et k ∈ R une constante réelle.
La fonction k f définie sur I par (k f )(x) = k × f (x) est dérivable sur I et pour
tout x ∈ I :

(k f )′(x) = k × f ′(x).

On notera généralement (k f )′ = k f ′.

Démonstration. C’est immédiat en considérant τ(h).

Exemple Soit f définie sur R par f (x) = 7x3 −2x2 + x −10. f est dérivable sur R et
pour tout x ∈ R :

f ′(x) = 7×3x2 −2×2x +1.

Théorème | Produit de deux fonctions

Soient f et g deux fonctions définies et dérivables sur I .
La fonction f g définie sur I par ( f g )(x) = f (x)×g (x) est dérivable sur I et pour
tout x ∈ I :

( f g )′(x) = f ′(x)g (x)+ g ′(x) f (x).

On notera généralement ( f g )′ = f ′g + g ′ f .

Exemples I Soit f définie sur R∗ par f (x) = (10+5x)× 1

x
.

f (x) est sous la forme f (x) = u(x)v(x).

u(x) = 10+5x et u′(x) = 5.

v(x) = 1

x
et v ′(x) =− 1

x2 .

Ainsi, f est dérivable sur R∗ et pour tout x ∈ R∗ :

f ′(x) = u′(x)× v(x)+ v ′(x)×u(x) = 5× 1

x
+

(
− 1

x2

)
× (10+5x)

C’est-à-dire, f ′(x) = 5

x
− 10

x2 − 5x

x2 =−10

x2 .

I Soit f définie sur R∗+ par f (x) =p
x

(
1+ 3

x

)
.

f (x) est sous la forme f (x) = u(x)v(x).

u(x) =p
x et u′(x) = 1

2
p

x
.

v(x) = 1+ 3

x
et v ′(x) =− 3

x2 .

Ainsi, f est dérivable sur R∗+ et pour tout x ∈ R∗+ :

f ′(x) = u′(x)× v(x)+ v ′(x)×u(x) = 1

2
p

x
×

(
1+ 3

x

)
+

(
− 3

x2

)
×p

x

C’est-à-dire, f ′(x) = 1

2
p

x
+ 3

2x
p

x
− 3

x
p

x
= 1

2
p

x
− 3

2x
p

x
.

2.3 Quotient

Théorème | Quotient de deux fonctions

Soient f et g deux fonctions définies et dérivables sur I . Supposons que pour
tout x ∈ I , g (x) 6= 0.

La fonction
f

g
définie sur I par

f

g
(x) = f (x)

g (x)
est dérivable sur I et pour tout

x ∈ I : (
f

g

)′
(x) = f ′(x)g (x)− g ′(x) f (x)

g (x)2 .

On notera généralement

(
f

g

)′
= f ′g − g ′ f

g 2 .
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Exemple Soit f définie sur

]
−∞ ;

1

7

[
∪

]
1

7
;+∞

[
par f (x) = 3x +2

7x −1
= u(x)

v(x)
avec

u′(x) = 3 et v ′(x) = 7.

f est dérivable sur

]
−∞ ;

1

7

[
∪

]
1

7
;+∞

[
et pour tout x ∈

]
−∞ ;

1

7

[
∪

]
1

7
;+∞

[
:

f ′(x) = u′(x)v(x)− v ′(x)u(x)

v(x)2 = 3× (7x −1)−7× (3x +2)

(7x −1)2

On développe et réduit le numérateur : f ′(x) =− 17

(7x −1)2 .

2.4 Composition

Théorème | Composée affine

Soient a, b deux réels et f une fonction définie et dérivable sur un intervalle I .
La fonction g définie par g (x) = f (ax + b) pour tout x tel que ax + b ∈ I est
dérivable en de tels x et :

g ′(x) = a × f ′(ax +b)

Exemple Soit f définie sur [2;+∞[ par f (x) =p
4x −8. f est dérivable sur ]2;+∞[ et

pour tout x ∈ ]2 ;+∞[, f ′(x) = 4× 1

2
p

4x −8
= 2p

4x −8
.

3 Tangente à une courbe

Définition

Si la courbe C f d’une fonction f est bien "lisse" au voisinage d’un point
A(a; f (a)), on appelle tangente à C f en A la droite qui épouse localement la
direction de cette courbe.
Autrement dit, en se rapprochant du point A, la courbe va finir par se confondre
avec sa tangente en ce point.

Propriété | Équation de la tangente

Si f est dérivable en a, alors f ′(a) est le coefficient directeur de Ta( f ), la tan-
gente à C f au point d’abscisse a.
Cette tangente admet pour équation :

Ta( f ) : y = f ′(a)× (x −a)+ f (a).

Démonstration. C’est direct par définition du nombre dérivé.

Exemple Soit f définie sur R∗+ par f (x) =p
x

(
1+ 3

x

)
. Déterminons l’équation de la

tangente à C f au point d’abscisse 1.

On a vu plus haut que f ′(x) = 1

2
p

x
− 3

2x
p

x
.

Ainsi, f (1) =p
1

(
1+ 3

1

)
= 4 et f ′(1) = 1

2
p

1
− 3

2×1
p

1
= 1

2
− 3

2
=−1.

De plus, f ′(1)× (x −1)+ f (1) = −(x −1)+4 = −x +5. On peut donc donner l’équation
attendue.

T1( f ) : y =−x +5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

C f

1

•

T1( f ) : y =−x +5
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4 Étude des variations d’une fonction

Propriétés | Lien dérivée/variations

Soit f une fonction définie et dérivable sur un intervalle I .

I f ′ > 0 sur I ⇔ f est croissante sur I .

I f ′ = 0 sur I ⇔ f est constante sur I .

I f ′ 6 0 sur I ⇔ f est décroissante sur I .

Remarque Désormais, nous allons pouvoir construire des tableaux de variations à
partir d’études du signe de la dérivée.

Exemple Construisons le tableau de variations de la fonction f définie sur [−2;4]
par f (x) = 2x3 −3x2 −12x +6.
f est dérivable sur [−2;4] comme somme de fonctions dérivables sur [−2;4].
On a pour tout x ∈ [−2;4], f ′(x) = 6x2 −6x −12.

Étudions le signe de cette expression. Le discriminant∆de 6x2−6x−12 est égal à 324 et
il y a deux racines réelles : −1 et 2. Ainsi, nous pouvons construire le tableau de signes
(le coefficient dominant étant strictement positif).

x

f ′(x)

−2 −1 2 4

+ 0 − 0 +

On déduit immédiatement le tableau de variations de f à partir des propriétés précé-
dentes et en calculant f (−2), f (−1), f (2) et f (4).

x

f ′(x)

f (x)

−2 −1 2 4

+ 0 − 0 +

22

1313

−14−14

3838

Théorème | Extremum

Si un maximum local ou un minimum local de f sur un intervalle I est atteint
en x0, alors f ′(x0) = 0.

Remarque La réciproque n’est pas toujours vraie. C’est le cas pour la fonction cube.
On a f ′(x) = 3x2 donc f ′(0) = 0 mais pourtant f (0) n’est pas un extremum local.

Exemple On peut déterminer des extremums locaux à partir de cette propriété par
élimination.

I Si on regarde l’exemple précédent, les deux solutions de l’équation f ′(x) = 0 dans
[−2;4] sont −1 et 2. Ce sont les antécédents de potentiels extremums locaux.

Il suffit de confronter le tableau de variations pour en avoir la confirmation.

f (−1) est un maximum local atteint en −1 mais pas global puisque f (4) = 38.

f (2) est un minimum local atteint en 2 et il est même global puisque pour tout
x ∈ [−2;4], f (x) f (2).

I Soit f définie sur R+ par f (x) = (x −1)3px.

f est dérivable sur R∗+. On va utiliser toutes les propriétés d’opérations sur les déri-
vées pour déterminer f ′. Soit x ∈ R∗+. f (x) = u(x)v(x) où u(x) = (x −1)3 de dérivée

u′(x) = 3(x −1)2 et v(x) =p
x de dérivée v ′(x) = 1

2
p

x
.

f ′(x) = u′(x)v(x)+ v ′(x)u(x)

= 3(x −1)2px + 1

2
p

x
(x −1)3

= (x −1)2
(
3
p

x + 1

2
p

x
(x −1)

)
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Cherchons les potentiels extremums locaux de f sur R∗+.

On doit résoudre l’équation f ′(x) = 0 :

f ′(x) = 0

⇔ (x −1)2
(
3
p

x + 1

2
p

x
(x −1)

)
= 0

⇔ x = 1 ou 3
p

x + 1

2
p

x
(x −1) = 0

⇔ x = 1 ou 3x + 1

2
(x −1) = 0

⇔ x = 1 ou x = 1

7

f (1) et f

(
1

7

)
sont des prétendants pour être des extremums locaux atteints respec-

tivement en 1 et
1

7
.

On peut maintenant donner le tableau de variations à partir du tableau de signes
de la dérivée.

x

(x − 1)2

3
p

x + 1

2
p

x
(x −1)

f ′(x)

f (x)

0
1

7
1 +∞

+ + 0 +

− 0 + +

− 0 + 0 +

00

f

(
1

7

)
f

(
1

7

)
+∞+∞

f (1)

On observe que f

(
1

7

)
est un minimum local et même global mais f (1) n’est pas un

extremum local.

On peut s’assurer graphiquement de la cohérence de nos conclusions.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3
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